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Introduction 

Systems science research provides avenues to address questions that frequently bedevil 

traditional analytic techniques due to the presence of substantial interdependence over time. 

Given that public health is often concerned with problems involving organizations, populations, 

and environments that dynamically interact and affect one another, it is unsurprising that there 

is substantial interest in systems science within this field (Kasman et al., 2021). The application 

of systems science to topics related to public health policy is still a relatively recent 

development that is both rapidly expanding as more people are exposed to it and changing as 

new tools are introduced. As this research approach matures in this multidisciplinary space, 

there is an increasing need for a set of guidelines that can help guide effective and appropriate 

usage for researchers as well as those who fund and consume systems science research.  

This document emerged out of a day-long workshop hosted at the National Institute of Health 

that took place on April 18th, 2016. The workshop gathered a number of experts in this area to 

discuss and come to some agreement regarding best practices in systems science research. 

During this discussion, topics for consensus statements of best practices were agreed upon, and 

an outline of these statements was drafted by the group. Participants included: William Riley 

(NIH), Ross Hammond (Brookings Institution), Michael Spittel (NIH), Patty Mabry (Indiana 

University), Elizabeth Bruch (University of Michigan), Hazhir Rahmandad (MIT), Nathaniel 

Osgood (University of Saskatchewan), Jonathan Caulkins (Carnegie Mellon University), Maria 

Mayorga  (North Carolina State University), Georgy Bobashev (RTI), Stephen Eubank (VBI), 

Volker Grimm (Karlsruhe Institute), Deborah Marshall  (University of Calgary), Ellis McKenzie 

(Fogarty International Center), Scott Weidman (NAS), David Mendez (University of Michigan), 

Lauren Ancel-Meyers (UT Austin), Ana Diez-Roux (Drexel), Mary Northridge (Columbia 

University), Kristen Hassmiller-Lich (UNC), Peter Hovmand (Washington University), John 

Sterman (MIT), Bobby Milstein (ReThink Health and MIT), and Matt Kasman (Brookings 

Institution). This outline was then expanded upon and refined by the lead authors, with 

guidance from the editors, as well as feedback and agreement from the advisory board.   

The remainder of the paper is organized around the topics or statements that the workshop 

members agreed constituted a set of best practices for the field. This set of best practices is not 

meant to be exhaustive, but rather establishes a baseline set of evaluation criteria to assure 

that Systems Science produces insights that are useful, feasible, credible, and ethical. We 

describe best practices across eight categories. We describe each best practice category in 

detail, and then present a summary checklist of best practices that can be used when planning 

or evaluating particular studies in context. 
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1. Research Purpose 
A research project should have clearly stated goals and scope. There should be a well-defined 
set of questions that the project will attempt to answer and a plan for assessing its success in 
doing so.  
 
Systems science models can be used for a wide range of different purposes (Epstein, 2008; 
Hammond, 2015; Page, 1999). The specific goals of a project have important implications for 
model design choices, model construction, and engagement with data. Assessment of a model 
by readers or reviewers is best done in light of the intended purpose of the model, and is aided 
by a clear statement of this purpose. 

 
We select three dimensions along which projects may differ in purpose: project aim, reference 

point, and empirical engagement. For each of these dimensions, we provide a clarifying 

question that can be used to situate a project along that dimension and a brief description. 

1. Project aim: is a project intended to study the etiology of a system; explore plausible 

mechanisms underlying policy effects, interventions, or other perturbations; assess tools; 

forecast a range of outcomes; set appropriate goals and evaluate existing goals, or create a 

pedagogical device? 

 

A project can focus on explicating the etiology of a system (i.e. how components of a system 

dynamically interact with one another), or on providing insight into causal effects (typically 

for a system whose operation has been the subject of prior research or posited by theory). 

Alternatively, a project can explore the quality of available tools, including: study designs, 

statistical inference or classification methods, datasets, and measurement instruments. 

Finally, projects can aim to create pedagogical tools that illustrate specific mechanisms or 

processes.  

 

2. Reference point: is the project retrospective or prospective in nature? 

 

Systems science research can attempt to explain patterns and outcomes that have already 

occurred (and can thus be compared to model behavior) or can provide insight into 

potential patterns and outcomes that might occur in a particular context. It is also possible 

for models to be functionally ahistorical, with no clear connection to existing or potential 

trends.  

 

3. Empirical engagement: to what extent is the project intended to represent a specific setting 

or settings, and to what extent is the model calibrated to empirical data? 

 

Some models (typically those that are theoretical or pedagogical in nature) are largely or 

entirely “data free,” relying on stylized representations of model components and 



dynamics. Others are more empirical in nature, using data from observations or 

experiments to characterize model components and dynamics.  

 

Table 1 provides illustrative examples of completed research, classified along each of the three 

dimensions of difference that we identify. These can be used to help guide the categorization of 

research projects or as exemplars for research projects in specific categories or combinations of 

categories.  

 

 

Table 1: Research examples by dimensions of difference 

Example Summary Project Aim Reference Point Empirical 
Engagement 

Schelling 
(1971) 

Highly stylized model of residential 
selection showing how 
preferences for same-race 
neighbors affects segregation 

Etiological Ahistorical Low 

Explanation: The purpose of the model is to explore the influence of a dynamic mechanism 
(preference-driven mobility) on residential segregation. It doesn’t engage with 
retrospective movement patters or prospectively predict changes. Model components 
and dynamics aren’t intended to represent a specific setting, but end-state residential 
segregation levels can be generally compared with those in the real world to assess the 
model’s explanatory power.  

Bruch and 
Mare (2006)  

Extends the classic Schelling model 
of residential segregation to 
explore the role of neighborhood 
preferences in forming observed 
levels of racial segregation 

Etiological Retrospective Strong 

Explanation: Like the Schelling model, the purpose is to explore the influence of preference-based 
mobility on residential segregation. However, model output is intended to be 
retrospectively compared to real-world patterns, and empirical data are used to 
characterize model components and dynamics. 

Reardon et al. 
(2014) 

Understand causal pathways 
driving socioeconomic sorting in 
U.S. college enrollment 

Etiological Retrospective Strong 

Explanation: The aim is to understand how a set of effect mechanisms affect patterns of 
socioeconomic sorting in college enrollment. The model attempts to retrospectively 
explain observed enrollment patterns, and model components and dynamics are based 
empirical data. 

Reardon et al. 
(2018) 

Predict effect of “race-neutral” 
admissions policies relative to 
race-based affirmative action 

Causal Prospective Strong 



Explanation: Building upon Reardon et al. (2014), this model explores how specific policies might 
impact college enrollment patterns. Model components and dynamics are based on an 
expanded set of empirical data sources.  

Luke et al. 
(2017)  
 

Provide insight into the potential 
effects of different combinations 
of tobacco retail policies across 
communities 

Causal Prospective Strong 

Explanation: This model shows how different policies and policy combinations might affect tobacco 
purchase patterns across community contexts. Model components and dynamics are 
based on empirical data sources.  

Teyhouee et 
al. (2017) 

Study efficacy of mobile phone 
sentinel system designed to detect 
food-borne illness outbreaks 

Tool 
Assessment 

Prospective Moderate 

Explanation: This model explores how different detection tools perform at the task of outbreak 
detection. It is predictive in nature, and is based on a combination of observed and 
synthetic data sources.  

Wilensky and 
Rand (2015) 

“Heroes and Cowards” game 
showing emergence of complex 
behavior from simple rules 

Pedagogical Ahistorical None 

Explanation: This model is a useful demonstration of how varying simple, individual-level rules and 
starting conditions can influence system-level outcome patterns. It is pedagogical in 
nature, not intended to represent existing or potential processes, and does not represent 
any real-world setting.  

Homer et.al. 
(2016) 

Assess the likely effects and 
affordability of combined regional 
investments to transform health 
system performance  

Causal Prospective Strong 

Explanation: This empirically-grounded model estimates the extent to which summary measures of 
population health, healthcare cost, social inequity, and workforce productivity could 
change over time if leaders were able to (a) deliver higher value care; (b) reinvest savings 
and expand global payment; (c) enable healthier behaviors; and (d) expand socio-
economic opportunities. To assess affordability, the model also calculates total program 
spending, as well as net financial benefit. 

Homer et.al. 
(2007) 

Show how a tug-of-war between 
health care payers and providers 
creates dysfunction, and explore 
how to defuse it. 

Etiological Retrospective 
and Prospective 

Moderate 

Explanation:  This generic model shows how progress in managing chronic illness in the U.S. has slowed 
since 1980, largely due to competition between payers and providers, resulting in price 
inflation and an unstable climate for health investments. It also demonstrates the likely 
impact of efforts to manage biological risks that directly affect illness onset, as well as 
broader efforts to enable healthier behaviors and to enhance living conditions. 



Levy,  et al.a,  Simulation model that forecasts 
tobacco prevalence by elucidating 
policy impact at each point in the 
cessation mechanism: quit 
attempts, choice of quit method, 
and effectiveness of quit method.  

Mechanistic/Fore
casting 

Prospective Strong 

Explanation: This model has real world implications for policy decision making. By showing the impact 
of tobacco control policies on each of three determinants of the cessation aspect of 
tobacco prevalence, the model relies on empirical data to estimate the impacts of a 
number of evidence-based policy combinations on tobacco prevalence. This model 
illustrates how simulators can be constructed to help decision makers forecast the 
intended and unintended consequences of their decisions.   

Levy et al.b, 
2010 

Tobacco policy simulation to 
understand policy requirements 
needed to achieve Healthy People 
2010 goals. 

Goal 
Setting/Evaluatio
n 

Prospective Strong 

Explanation: This model starts with a specified desired outcome. The model is used to discover what it 
would take, in terms of resources and policy effects, to achieve the desired goal of 
reducing tobacco prevalence to 12% by 2010 (Healthy People 2010). The model shows 
what combination of existing policies with demonstrated effects would be needed to 
achieve the goal. Even with unlimited resources and utilizing all of the most effective 
evidence strategies the goal was shown to unobtainable in the proposed timeframe. 
Modeling can be used to both evaluate existing goals for resource requirements and to set 
appropriate goals that coincide with available resources and evidence.  

Milstein et.al. 
(2007) 

Explore plausible trajectories for 
diabetes prevalence to assess the 
achievability and compatibility of 
future national objectives 

Pedagogical Prospective Strong 

Explanation: This empirically-grounded model demonstrates that the 2010 national objective for 
reducing diabetes prevalence is unattainable, given historical dynamics of incidence, 
diagnosis, and mortality. It explains why mental models based largely on the dynamics of 
infectious disease are flawed when used to set goals for preventing chronic diseases. 
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2. Research Approach 
A specific systems science approach has been identified, and that approach is appropriate 
given features of the modeling problem and research goals.  

 
In this section, we provide information that can help researchers decide when systems science 

approaches are well suited for their research questions, and how to identify specific approaches 

that can answer those questions. We first discuss when using a systems science approach is 

appropriate; second, introduce a series of dimensions along which research questions differ 

that can help guide the selection of a specific approach; and finally, present examples of three 

different systems science approaches in the public health realm.  

When to use a systems science research approach:  

With increases in computational power and a growing recognition of the limitations of 

traditional research approaches, systems science approaches have gained favor among 

investigators in a variety of fields. When used appropriately and effectively, these research 

methods confer many advantages to investigators (Epstein, 2008; Hammond, 2009; Hammond 

et al., 2017; Sterman, 2000; Mabry et al., 2010). In particular, they can: 

1. capture the dynamic and interdependent relationships between components within a 

system, which may occur at or between multiple levels of scale, and how these 

relationships may adaptively change over time;  

2. help explain how system-level behavior can arise from the interactions between 

individual system components in nonlinear ways;  

3. act as “policy laboratories” or “flight simulators,” allowing researchers to test 

interventions that cannot be feasibly explored in the real world due to time, cost, or 

ethical constraints;  

4. guide the collection of future data;   

5. build theory that informs future research and policy; 

6. identify research gaps, and prioritize their importance for pursuing a given outcome; 

7. be used to evaluate an existing policy or policy combination, in order to determine 

whether a specified goal will be met within a given timeline; 

8. be used to inform goal setting, helping to identify realistic goals given resource 

constraints and timeframes; and 

9. systematically synthesize available data, especially from different fields of study, and at 

different levels of analysis of the system. 

However, systems science approaches are not suitable for all research questions. Real-world 

experimentation and traditional empirical analysis may be more appropriate when the focus of 

investigation is whether an association exists between variables, rather than how these 

associations can be characterized in terms of simultaneous causal pathways and feedback 

loops. This is particularly true if investigators desire high internal validity and characterization of 



the relationships between variables in precise, quantitative terms (Miller & Page, 2007; Homer, 

2014). Whereas the passage of time is an important dimension in system science and allows for 

the observation of behavioral adaptation, researchers may favor other approaches if the focus 

is on associations between variables at static points in time. In addition, traditional approaches 

are better suited when the relationships between variables are direct and linear, such that 

changes in inputs correspond to proportional changes in outputs (Luke & Stamatakis, 2012).  

Dimensions of difference between research questions:  

If systems science approaches are applicable to the research question, the next step is choosing 

the best specific approach. Since no single approach is best suited to all situations, we have 

identified eight important dimensions of difference between research questions to help guide 

selection. While this list is not exhaustive, evaluating the research question through the lens of 

these eight dimensions will help ensure the systems science approach aligns with the research 

goal (see Table 1).  

1. The perspective from which the research question is analyzing the system: top-down, 

bottom-up, or process-oriented. A research question with a top-down perspective is 

interested in how system behavior is a result of the way system components are structured 

and connected—via causal pathways and feedback loops—rather than individual behaviors 

and outcomes; although all systems science research incorporates causal mechanisms and 

feedback, top-down models inherently explicate these, which can have important 

implications for how models are developed with and communicated to stakeholders 

(Marshall et al., 2015; Minyard et al., 2018). For example, a research question focused on 

drug addiction might observe how changes in recidivism rates result from the way that 

system components—employers, law enforcement, or housing availability—interact. A 

research question with a bottom-up perspective is concerned with how individual entities 

within the system behave and interact to shape system-wide outcomes. Researchers 

exploring migration patterns might look at how the properties of individuals in the system 

influence the way they move and interact with one another, thereby shaping population-

level patterns in migration. A system composed of resource-constrained processes would 

benefit from a process-oriented perspective. Here, rather than system-level feedbacks or 

individual agent interactions, complexity emerges from interactions between different 

processes and the sharing of limited processing resources (Zhang, 2018). This perspective is 

commonly used in health care and disease screening where the agency of patients and 

system-level feedbacks play a less dominant role. For example, an investigator may examine 

the impact that different employee scheduling protocols may have on emergency 

department wait times or cost-effectiveness. 

 

2. The nature of active entities. Researchers must consider the nature of the active entities 

that are most important for the system under study. The active entities are those whose 

behavior, statuses, and outcomes are central to the dynamics of the system. It could be 



individual people, companies or other organizations, aggregated sub-populations, or 

services provided within a community. For example, a hospital could be considered as a 

collection of individual patients and doctors, making the active entities the patients and 

doctors. If the focus is on interactions between multiple hospitals, or between hospitals and 

law enforcement agencies, the patients and doctors might usefully be aggregated, making 

the hospital the active entity. Active entities are not limited to tangible objects. They can be 

something more abstract, such as level of satisfaction, amount of stress, or fear of legal 

sanctions, which could be described within an individual person or at the population level. 

For example, if the focus is on the performance of the hospital in offering health services, 

the active entity might be the processes within the hospital (and the associated process 

resources).  

 

3. The importance of heterogeneity among system entities. If a researcher is interested in 

how the dynamics of a system change across different populations or how a policy 

intervention might have different effects in a variety of discrete locations, heterogeneity is a 

significant consideration. For example, if researchers want to create a model that examines 

the effects of a soda tax on soft drink consumption, then heterogeneity across factors like 

race, income, and urbanicity may be important, particularly if interventions are being 

considered across a spectrum of distinct geographic regions. Conversely, entities may be 

characterized by average patterns of behavior, without distinguishing between particular 

types of entities. This may be sufficient for showing how general trends emerge from the  

dynamics of a system, particularly in cases in which entities are homogeneous across key 

dimensions, when more granular data is unavailable, or when broad interventions will be 

enacted that cannot be tailored by heterogeneous characteristics. When heterogeneity is 

low, often models can aggregate similar entities (e.g. individuals). 

 

4. The importance of geographic and social space. Objects, ideas, and other phenomena—

both tangible and intangible—may spread between entities (e.g. individuals or 

organizations) through their interactions with each other in a way shaped by social 

structure. Entities themselves may also move through geographic space. For example, 

investigators interested in the spread of epidemics may require an approach that can 

simulate geographic distribution and transmission of disease across a city, country, or even 

the world. A research question aimed at analyzing the spread of body image norms through 

a community might require an approach that can simulate social network ties between 

individuals and account for how they change over time. 
 

5. The handling of updates. Investigators must consider whether updates to the system occur 

gradually (continuous), such as the gradual change in population size over time, or at 

specific times (events), such as a discrete change from a susceptible to infected status. 

Change events might update after the passage of a fixed amount of time, such as every 

simulated day, due to the action of other entities, such as a patient exiting a hospital once a 



doctor completes the treatment, or based on a hazard rate, such as a person having a 

certain daily probability of making a purchase decision. 

 

6. The transparency of model structure. There is often a need to communicate the structural 

assumptions of models to experts from diverse backgrounds, either internal to external to 

the modeling team. This is important for a number of reasons, including supporting expert 

participation, communicating learning to stakeholders, or persuading policy makers. Each 

modeling approach is associated with a general level of inherent transparency, influencing 

the amount of work needed to effectively communicate model structure (e.g. model 

components, relationships between them, feedback loops). 

 

7. The complexity of computation. Systems models are simulations, which require computing 

hardware. There can be differences of orders of magnitude between different models, 

which can translate into requiring days or longer of simulation time on multi-node 

computing clusters instead of minutes or hours on a single laptop. This is magnified when a 

model has stochasticity, thereby requiring repeated realizations of identical model 

parameterizations. 

 

Table 2: Comparisons of three complex systems approaches 

Axis of difference ABM DES SD 

Perspective Bottom-up Process-oriented Top-down 

Focal entity Individual Process Aggregate 

Heterogeneity High High 
Low to 
moderate 

Geographic/social granularity High High 
Low to 
moderate 

Handling of updates Event Event Continuous 

Transparency Moderate High High 

Complexity of computation Low to high Low to high 
Low to 
moderate 

 

Examples of the application of different systems science approaches:  

Table 2 shows how three commonly used systems science approaches can be roughly 

categorized in each of our defining dimensions. This is meant as a general guide, however, as 

each of these approaches is flexible enough to be able to transcend some or all of the 

classifications we give here. Agent-based modeling (ABM) simulates individual entities (e.g. 

individuals, organizations) interacting with one another and their environment over time. 



Discrete Event Simulation (DES) describes resource-constrained processes acting on relatively 

passive entities (e.g. an emergency department with finite resources offering care to patients). 

System Dynamics (SD) models focus on explicitly representing relationships between system 

components and feedback mechanisms. Below, we discuss examples of how these approaches’ 

attributes were leveraged to engage in research.  

The Model of Infectious Disease Agents Study (MIDAS) is a network of scientists who have used 

ABM to study the spread of communicable diseases and explore measures to limit transmission. 

Among the many contributions of MIDAS, an ABM was developed that simulated the global 

transmission of an H1N1 outbreak among billions of distinct agents. These insights were used 

to, among other things, refine emergency response policy during pandemics (Epstein, 2009; 

Parker & Epstein, 2011). Smaller-scale ABMs, including those by Burke et al. (2006), provided 

evidence about how targeted contact tracing and vaccination can contain smallpox outbreaks 

(Burke et al., 2006). 

ABM allowed MIDAS researchers to take a bottom-up perspective, observing how individual 

entities behave and adapt to the spread of disease (e.g., vaccinating or self-quarantining) to 

influence macroscopic outcomes (e.g., spread of disease over geographic regions) (Hammond, 

2015). Researchers represented huge numbers of simultaneous entities (agents)—individuals—

who are both the active agents and heterogeneous with regard to immunological and 

behavioral response. Additionally, and importantly in the study of infectious disease spread, 

ABM allowed researchers to capture how individuals move about geographic space over 

discrete time intervals—between their home, workplace, hospitals, and elsewhere—coming in 

physical contact with others and facilitating the spread of disease.  

DES has been used widely in research on improving the efficiency and organization of hospitals 

and healthcare systems. For example, researchers at the Mayo Clinic used DES to analyze the 

effect of different policies designed to minimize the number of beds needed for cardiovascular 

surgery patients while maintaining timely patient service. Limiting the day-to-day variability of 

surgery schedules, adding weekday surgery, and moving long-stay patients out of the ICU were 

all identified by the modelers as potential strategies (Marmor et al., 2013). DES was chosen 

because the research question analyzed the system from a process-oriented perspective: the 

optimization of queues (e.g., patients moving from waitlist, to surgery, to recovery) and the use 

of limited resources—such as doctors and beds—that are allocated according to needs. 

Through a DES model, patients in the system can be characterized as passive entities who 

change state according to the flow of queues and cannot actively affect their queue position 

through behavior, and who are heterogeneous across certain variables (e.g. recovery time).  

SD modeling has been used in a variety of health contexts (Homer and Hirsch, 2006), including 

research on physiological phenomena like energy homeostasis. In an SD model of weight gain, 

obesity, and fertility in women, Sabounchi et al. (2014) explore competing tradeoffs between 

the time required to lose weight and age-related fertility declines. Such insights can help guide 

preconception obesity intervention policy and planning. SD modeling was used to create a top-



down representation of fetal size and maternal weight as a set of stock variables that are 

influenced and acted upon through feedback mechanisms by other variables. This approach 

was successful because there were well-defined relationships between system components, 

and no need for heterogeneity within these system components.  

Finally, researchers have the option of combining approaches (including those described above) 

in hybrid models that can take advantage of the strengths of multiple approaches (Swinerd and 

McNaught, 2012). Kreuger (2018) develops a model of tobacco smoking and purchasing 

behavior that consists of an ABM with multiple agents, each of which contains an SD module 

that depicts internal addiction dynamics. Hybrid modeling was chosen due to ABMs strengths in 

capturing social network and agent heterogeneity, while SD excels at describing the feedback-

rich addiction theories used. 
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3. Research team/preparation 
A research team should benefit from expertise in multiple, specific domains. 

This section is meant to judge the potential value or success of proposed work rather than 

completed work. It is meant to help set realistic expectations of what good modeling takes, 

rather than as a tool to judge work already completed. As such, this is meant simply to highlight 

relevant features that have proven effective in the past. Importantly, however, not all skills are 

essential for all modeling projects and not all may be given equal weight.  

There are 4 main skill areas that should be considered when building a team to conduct systems 

modeling research: 

1. Content familiarity includes knowledge of the theory, empirical evidence, and policy within 

a given domain. For example, when using a systems model to evaluate health interventions 

within a clinical environment, it is helpful to have expertise on the team from clinical 

(physicians or nurses) and administrative (clinic managers) perspectives to help inform the 

process. This is true not only in interpreting results, but in the construction of the model 

itself since, as will be discussed further in the sections on design, assumptions, and 

development, drawing on existing domain theory, knowledge of the available empirical 

evidence, and prevailing policy considerations will strengthen both model design and the 

value of modeling results. 

 

2. Software design experience refers to software engineering best practices and knowledge 

of the programming language for the specific modeling package chosen (e.g. NetLogo 

language or Java). This includes expertise in file versioning and documentation, software 

testing methods, software design best practices, database management, and 

computational complexity scaling.  

 

3. Data analytical experience refers to knowledge of various analytical and statistical 

methods important to a type of complex problem, as well as methods to integrate multiple 

data sources into the same system model. Examples of analytical methods could include 

social network analysis, GIS, and survey analysis methods such as Discrete Choice 

Experiments, as well as general skills in statistics and data science.  

 

4. Systems modeling experience includes knowledge of modeling best practices, such as 

discussed in this document. A modeling expert would also have experience translating 

domain knowledge into model algorithms. While it may be possible for non-experts to 

build models that appear convincing, there is often considerable nuance and many implicit 

modeling assumptions required (Hoffer, 2013; Sterman, 2001).  

While it’s important for the research team to encompass the four general skill sets above, the 

conduct of reliable systems science research requires rather nuanced understanding within 



these general categories. The sections that follow explain in greater detail the sort of 

experience that needs to be brought to bear in order to produce high-value results. 
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4. Model assumptions 
Assumptions are clearly explicated and are appropriate given research purpose and 

approach. 

Every model incorporates simplifying assumptions. The assumptions made by statistical models 

are well-known and frequently discussed when considering their application and interpretation 

(e.g. independence of observations and distributions of underlying data). Systems science 

allows for highly flexible models that are not hindered by the same assumptions; however, they 

require a different set of assumptions. Moreover, the assumptions made by systems science 

models are neither uniform across models (even models that may appear superficially similar) 

nor obvious to the casual observer. Therefore, it is incumbent upon systems science 

researchers to carefully consider the assumptions that are inherent in the models that they 

design and deploy, and to explicate these assumptions.  

We identify four ways in which assumptions are used in systems science modeling: 

1) Process timeframe. Assumptions that determine the time horizon within which the 

phenomena that a model attempts to represent must and can be meaningfully 

captured.  

2) To determine what is included in -- and excluded from -- a model (i.e. setting model 

boundaries). Everything that is excluded is assumed to not affect model behavior within 

a given context and timeframe. These assumptions also define the populations being 

modeled, and the relevant environments in which they operate. 

3) Defining endogenous model components. These assumptions determine what model 

components are allowed to dynamically change during the course of a model run and 

how they do so. 

4) Defining exogenous model components. These assumptions determine static 

components of models. These include initial distributions of variables and relationships 

between them, variables that do not change during the course of model runs, and 

mechanisms that remain fixed. 

We identify six broad sources for making assumptions in systems science models. When 

possible, best practices are to utilize the strategies in priority order moving roughly from #1 to 

#5 listed below, with #6 describing a categorically distinct source of model assumptions. It is 

possible to inform assumptions with multiple, mutually reinforcing sources. 

1) The assumption is obtained directly from data. This is the preferred method for deriving 

assumptions because it can be precisely tailored for specific model contexts and 

applications. For example, an ABM of college enrollment includes a specified correlation 

between student caliber (a single construct representing observable student 

achievement and potential) and family resources that is taken from an analysis of 

relevant variables available in the ELS dataset (Lauff & Ingels, 2015; Reardon et al., 2014; 

Reardon et al., 2018). The appropriateness of these assumptions largely rests on data 



quality (including the compatibility of data sources if more than one are being 

employed), analytic rigor, and the match between analytic results and model constructs. 

2) The assumption is taken from available literature, in particular empirical findings 

reported in peer-reviewed literature. This is the second most preferred method for 

deriving assumptions. This is similar to the first category except that the analyses were 

undertaken by other researchers. Therefore, some additional caution must be used here 

in cases where multiple literature sources are being combined with one another or with 

direct data analyses (e.g. making sure that they are comparable) or where details of how 

particular estimates were obtained are not completely transparent. In general, the 

stronger the level of evidence (scientific rigor) of the cited literature and the greater the 

similarity of the population and conditions described in the literature is to those 

represented in the model being developed, the greater the confidence and suitability 

the literature is for making assumptions. 

3) The assumption is derived from theory. While less desirable than strategies #1 or #2, a 

modeler often encounters situations where appropriate data from these sources is not 

available. For example, many models make an explicit or implicit assumption that 

consumers make rational decisions (Luke et al., 2017); this is a central assumption in 

classical economic theory. The appropriateness of these assumptions rests on how well-

validated a theory is for a particular application.  

4) The assumption is derived from expert opinion. Model assumptions derived, wherever 

possible through rigorous qualitative analytical methodology, from the intuition and 

experience of content area experts. 

5) Assumptions are derived through sensitivity analysis. Model assumptions arrived at 

during the course of model testing.  

6) The assumption is a focus of model inquiry. Etiological or retrospective models are often 

deployed to test the explanatory power or implications of specific hypothesized 

mechanisms. For example, Schelling’s model (1971) of the emergence of residential 

segregation tests how a hypothesized behavior (residents attempting to move only 

when a relatively high proportion of their neighbors were of a different race) would 

affect housing patterns. Because they are intended to be explicitly tested, the 

appropriateness of these assumptions is predicated solely on how well they are 

operationalized within a model. 

When describing a model, researchers should identify the assumptions they make; we believe 

that going through the three categories of types of assumptions—model inclusion, endogenous 

components, and exogenous components—may help researchers to generate an exhaustive 

list. For each assumption that researchers identify, they should be able to provide a rationale 

for its inclusion from among the four categories that we provide, and should also be able to 

argue for its appropriateness given their research purpose and approach. By doing so, their 

audience should have a clear sense of how a model comports with (or departs from) existing 

literature as well as how to interpret model findings.  
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5. Model design 
An effective model design conceptualizes the currently understood or proposed mechanisms, 

ensuring model components (such as inputs, dynamic processes, and outputs) are 

appropriate for the research purpose. 

The process of model design can be thought of as one of conceptualization. Drawing on the 

inter-disciplinary knowledge of the research team, the problem needs to be described or 

mapped in such a way as to highlight the perceived causal relationships relevant to the problem 

at hand. The design will draw heavily on model assumptions, since they define what should be 

included in the model. Furthermore, they also define whether something is endogenous or 

exogenous, the former requiring some internal dynamic causal structure, the latter requiring 

some knowledge of how certain variables will be parameterized or estimated. Not only is this a 

valuable deliverable in its own right, but it also provides a strong foundation for the 

operationalization of the model during model development, discussed in the next section.  

However, because the systems being studied are often complex and require experts from 

multiple domains, designs themselves can easily become difficult to understand. In this case, it 

is useful to remember that the modeling process should be iterative. The goal of the design is to 

represent the collective knowledge of the team at a given point of time. As the model is 

developed and validated (as described in the next section), learning will require that the model 

design be updated. For example, it can be often difficult to see a logical or empirical 

inconsistency in the design until it starts to become operationalized in a running model. 

Therefore, the team need not focus on ensuring that the model design is complete before 

moving on to the process of operationalizing it. 

On the other hand, the model design must have sufficient complexity to guide the model 

development process. As discussed in the section on research approach, systems modeling is 

useful when a system possesses certain types of complexity. Therefore, the design of the model 

must include some features suitable for a systems lens. For example, if the research approach 

seeks to understand the interdependent relationships between actors in a system, the design of 

an ABM should include a set of assumptions and causal descriptions of those interactions.  

One way to reinforce this balance between simplicity and sufficiency is to use a design protocol 

that outlines what types of features or model components should be described. There are 

multiple such protocols useful for some, or all, of the main modeling approaches. Causal loop 

diagrams are often used, especially though not exclusively with SD models, to map the 

underlying causal structure in a principled way (Sterman, 2000; Kim, 1992; Homer, 2019). The 

PARTE framework (Hammond, Osgood and Wolfson, 2017) is a useful approach for ABMs 

specifically. It is named after its constituent themes: properties, actions, and rules (which define 

the agents), and time and environment (which define the agent context). The ODD framework 

(Grimm et al., 2006; Grimm et al., 2010), also useful for ABM conceptualization. It encompasses 

a wide array of factors to specify in the design, such as model stochasticity, whether agents 



interact or learn, and where emergent behavior is expected. ODD+D (Müller et al., 2013) is an 

extension to specifically incorporate human decision-making in ABMs. 
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6. Model development and testing 
The model is accurately and adequately operationalized in software, subject to verification 

and validation, and following an incremental development process.  

For confidence to be built in any model’s output, researchers need to consider how to properly 

verify and validate their model (Sterman, 2000). Verification is the process of ensuring that the 

model design matches the model built. In other words, it is an attempt to answer the question 

“are we building the model right?” Validation is the process of ensuring that the model design 

matches the problem being modeled. In other words, addressing the question “are we building 

the right model?”  

To accomplish these interrelated tasks, we suggest an iterative or incremental development 

process (Homer, 1996). This is an idea supported by the software engineering paradigm of agile 

development (Fowler & Highsmith, 2001) and entails regular review, from very early on and by 

some or all team members, of model features. There are different types of reviews that can be 

conducted, ranging from formal to informal, engaging the whole team or even specific pairs of 

members, and focusing on such things as model structure, model output, or model parameters 

(e.g. Freedman, 2000; Wiegers, 2002). But in all cases, the goal is to allow the team to maintain 

an updated and dynamic understanding of the behavior of the model. 

This process supports confidence building in at least four ways. 

1. Finding model coding errors: It helps the team discover programming errors early. Early 

detection of code errors is vital for maximizing project efficiency. Conducting regular 

reviews of a software project as complex as a systems model can often find software 

errors more efficiently than relying exclusively on testing practices.  

2. Avoiding the kitchen-sink model: It helps the team control the level of complexity and 

detail in dynamic models. A practice to avoid is the adding of parameters or mechanisms 

that have no clear real-world meaning but are only intended to obtain the expected 

results from the model. This often leads to significant struggles in verification and 

validation. This not only subverts the natural learning process of model construction but 

also reduces the validity of model behavior. In this respect, dynamic models have more 

in common with software engineering projects than statistical models.  

3. Accelerating learning: It allows the team to effectively understand the behavior of the 

model and assess the influence of key assumptions through various types of analysis, 

discussed more fully in the section below. Indeed, one of the primary sources of value of 

a modeling project is the clarity it brings to our individual and collective mental models, 

which allows the team to critique and study the assumptions they are making as 

individuals and learn from those made by other team members. This also facilitates 

regular comparison with available data, thereby improving model validity. 

4. Adapting to changing project requirements: As a modeling project progresses, 

discoveries may bring about a shift in the project’s assumptions, purpose, or approach. 



For example, a study exploring leverage points in reducing patient wait times in an 

emergency department may discover that patient heterogeneity is more important than 

initially thought. This might require a change from an SD approach to an ABM or hybrid, 

the addition of behaviors for which empirical or theoretical knowledge must be 

gathered, or even a change in the purpose of the model. By following an iterative 

development process and regularly comparing mental models with model behavior, 

important shifts in project elements can be discovered early. 

The unique characteristics of the modeling project will determine specifics such as how often 

model results are examined, how regularly the team meets, or how much of the team is 

present at each meeting. Even projects that involve simpler models should incorporate some 

iterative development, at the very least to investigate and understand potentially surprising 

model behavior. There are codified approaches to incremental development that researchers 

may find useful (e.g. Hovmand, 2014).  

In addition to the model review process discussed above, model testing is critical in building 

confidence in model output, especially when model output generates surprising results. 

Thorough and timely model testing prevents the introduction of errors during iterative 

development and ensures the replicability of model results (as discussed in Section 8, below). 

There are many sources for testing best practices (e.g. Ammann, 2016; Craig, 2002; Kaner, 

1999), and the modeling and software experts on the team should identify, explicate, and 

engage in those most appropriate for a given project. 
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7. Model Analysis 
The behavior of the model is fully explicable through model components and causal dynamics 

and matches the research questions. Sensitivity analyses quantify how uncertainty in model 

inputs are associated with model outputs.  

Model analysis requires some type of strategy to explore model output under various 

parametric and structural assumptions. The strategy will clearly depend on model purpose. For 

example, a model built to identify data gaps or to guide data collection might require a simpler 

analysis strategy than one seeking to predict multiple counter-factual scenarios. Selecting the 

appropriate experimental design or strategy is important. It might require as much time to 

properly conduct model analysis as spent in model development. 

There are many types of experimental designs suitable for simulations studies. Sanchez and 

Wan (Sanchez & Wan, 2015) outline several. The simplest is some form of factorial design, 

where all allowed values of the different model parameters are considered. This allows 

identification of interesting parameter regimes and notable parameter interactions. For simple 

models, this might be sufficient, but more complicated models with many parameters that 

must be varied will require other designs, such as Latin hypercube sampling. Some systems 

models will also possess stochastic variation (due to the use of pseudo-random numbers) which 

must be accounted for by the chosen experimental method. 

Whichever method, or combination of methods, is chosen, the goal is to efficiently explore 

model output while varying all pertinent assumptions and model parameters across wide 

ranges. This requires conscientiously defining ranges for parameters based on what is 

empirically plausible, feasible, or interesting, including extreme values. Reference should be 

made to empirical experiments, previous simulation studies, or expert opinion. Additionally, 

some parameters can be estimated using optimization algorithms, which repeatedly run the 

model while varying parameters to minimize some objective function, usually some difference 

measure between model output and empirical observations. These parameter estimates can be 

used to refine parameter ranges. 

These sensitivity analyses are important for determining the generalizability and robustness of 

model outputs. Parameters or assumptions most impactful on key conclusions should be 

identified. The robustness of conclusions to the feasible ranges of assumptions should be 

discussed. Sources of uncertainty should be acknowledged. The goal should be to determine 

how sensitive the model’s results are to numerical, behavioral, or structural uncertainties. 

It is important to explain the main results in terms of the underlying structural mechanisms in 

the model. For example, an ABM that studies social influence and selection will likely include 

mechanisms for a social network between agents. A proper analysis will describe, for example, 

how and why network clustering controls influence and selection dynamics. Or, an SD model 

incorporating role modeling in the spread of behavioral changes could explain the conditions 

where role modeling’s impact is increased or decreased, and why. Explanations and conclusions 



should be compared and contrasted with any established and relevant literature. And, as 

discussed more fully in Section 8, attention should be paid to the reproducibility of 

experimental procedures and analysis results. 

This process can be very computationally expensive. Without adequately following an iterative 

model development process as outlined above, a model can become sufficiently complex to 

possess many more parameters with wider ranges than might be required otherwise. 

Furthermore, grounding results in knowledge of the model’s structure becomes much more 

difficult. 
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8. Reporting model design and results 
Both the design of a model as well as results of model runs are available for scientific 

scrutiny. The model is described in a way that allows for its core components and key findings 

to be reproduced.  

Dissemination is a crucial, if often overlooked, aspect of research. The goal of dissemination is 

twofold: the audience should be able to understand what was done (and why it was done that 

way) as well as what researchers learned. In approaching this goal, researchers should keep in 

mind heterogeneity within their audience with regards to perspective and background. 

When describing completed systems science research, the gold standard is comprehension and 

reproducibility. An interested and capable consumer should ideally have enough information 

available that they can understand a model’s design, including the rationale and methodology 

used in its construction; how it was implemented; the ways in which researchers tested and 

deployed the model; and patterns of behavior exhibited by the model. The consumer should 

then be able to reproduce the methodology used and obtain similar results.  

The information that researchers should provide includes:  

• A clear description and documentation of model components and dynamics. At a 

minimum, variables included in the model, whether these are fixed or updated during 

model runs, frequency of updates, and source of updates should be reported. 

• A full list of software and libraries used (including, where applicable, versions) 

• Transparent reporting of the sources of data, model building process, stakeholders 

engaged, sources of funding, and potential conflicts of interest 

• Enumeration of which model inputs were calibrated and description of the process 

• A coherent and complete account of how the model was used 

• Data underlying model parameterization and use across all runs 

• Model output data (either complete data or meaningfully aggregated). For models with 

substantial stochasticity, it is best to conduct a large number of simulation runs 

reporting the resulting outcome distribution along with some measure of uncertainty 

quantification. 

• Any third party audit the model has been subjected to 

For a variety of reasons (e.g. use of proprietary data or software), all of this may not always be 

feasible. However, a good faith attempt should be made to provide as accurate and complete a 

depiction as possible. Although there is no single “correct” way to describe a model and its use, 

there are a number of frameworks and guides that have been proposed and employed (e.g. 

ODD, TRACE, PARTE); researchers might consider turning to one or more of these in order to 

ensure the completeness and accessibility of their reporting (Donoho et al., 2009; Grimm et al., 

2010; Grimm et al., 2014; Hammond, 2015; Jackson et al., 1991; Waltemath et al., 2011; 

Rahmandad et al., 2012).  



Finally, researchers should recognize and respond to the needs and interests of multiple 

audiences. For example, if their model application and results may suggest areas where future 

data collection or systems science research might be especially fruitful, this should be 

communicated to others in the field. Similarly, if a model produces results that have important 

implications for policy and practice, researchers should both describe their model and relevant 

results in a user-friendly manner. This might include diagrams, tables, and text summarizing a 

model’s operation and sources of input data; dynamic depictions of model runs; or accessible 

output data visualizations. In such situations, technical details of the model can be provide in 

supplementary material. 
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Best Practices Checklist 

 
A set of criteria that researchers, funders, and reviewers can use to engage in and evaluate 
proposed, ongoing, or completed projects 
 

1. Research Purpose: project goals and research questions 

 Project has clearly stated goals (i.e. research questions, uses and users addressed) 

 Scope of project is well-defined 

 Plan for assessing whether research goals have been met  

2. Research Approach: system science methods used 

 Systems science can be used to address the research questions 

 A specific systems approach is identified 

 The systems science approach is appropriate for the research goals given its handling of: 

 Perspective 

 Active entities 

 Heterogeneity 

 Geographic or social space 

 Updating 

 Design transparency 

 Computational complexity 

3. Research Team and Preparation: personnel skills and roles 

 The research team has personnel with expertise sufficient to meet research goals, including: 

 Content familiarity 

 Software skill 

 Data analytic skills 

 Complex systems modelling 

4. Research Assumptions: support from theory and data 

 It is clear how assumptions define: 

 What is included in (and excluded from) the model 

 Endogenous (dynamic) model components 

 Exogenous (static) model components 

 Researchers identify the basis for each assumption (data, literature, theory, direct inquiry) 

5. Model design: conceptualization of causal relationships 

 Incorporate all model assumptions 

 Design should be simple enough for the team to understand and complex enough to describe system 

behavior 

 Select one or more design protocols (e.g. causal loop diagram, PARTE, ODD, ODD+D) 



 

 

6. Model development and testing: translating design into a functional model 

 The model is accurately and adequately operationalized in software 

 The model is developed in an incremental fashion with regular model review meetings by the whole 

team, especially intended users 

 The model has been subjected to verification and validation tests 

7. Model Analysis: using the model and its output 

 The behavior of the model is fully explicable through model components and dynamics 

 Model behavior addresses research questions 

 Sensitivity analyses are used to quantify how varying assumptions affects model output 

8. Dissemination Plan: communicating the model and findings 

 Researchers provide information including: 

 A clear description and documentation of model components and dynamics 

 A full list of software and libraries used (including, where applicable, versions) 

 Sources of data, model building process, stakeholders engaged, sources of funding, and potential conflicts of interest 

 How model inputs were calibrated 

 Model parameterization 

 Model use 

 Model output, including quantification of uncertainty across repeated runs and results from sensitivity analyses 

 Any third party audits the model has been subjected to 

 The information provided is sufficient to scrutinize the model and its output and replicate findings 

 Researchers communicate model design and findings to relevant audiences using clear, understandable 

language 
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